

Industry			
2000 – pr	resent	Globalization Era	Biotechnology, Nanotechnology
Academi	a		
1901 U	nit Ope	rations	Davis, G.E. "A Handbook of Chemical
1923 (J nit Op o	erations	Engineering ", Davis Bros., Manchester, GB Walker, W.H., Lewis, W.K., McAdams, W.H. " Principles of Chemical Engineering ", McGraw-
1958 <mark>1</mark>	ranspor	t Phenomena	Hill, New York, USA Bird, R.B., Stewart, W.E., Lightfoot, E.N. "Notes on Transport Phenomena", Wiley, New York
1962 C	'hemica	Reaction Enginee	ring Levenspiel, O. "Chemical Reaction Engineering", Wiley, New York
1970 - 1	990	Process Control &	Optimization
1990 — pi	resent	Complex Systems	Composite, multi-component, multi-scale, non- linear, non-equilibrium

New Frontiers in Chemical Engineering

Symposium on New Frontiers in Chemical & Biochemical Engineering, CERTH, Thessaloniki (2009): Thematic Areas

- Functional Materials
- Environmental Physical & Chemical Processes
- Energy
- Chemical Engineering Fundamentals
- New Paradigms in Chemical/Biochemical Engineering
- Process Systems Engineering
- Biomedical Advances

27-11-09

DH

27-11-09

DH

Encaps	ulation of pancreatic islet cells for diabetes type 1 treatment
•	Successful encapsulation of islet cells isolates donor tissue from the host
	<i>immune system, thus assuring long-term viability and functionality of the islet</i>
	cell transplant. Membrane acts as a barrier against passage of
	immunologically active moieties, e.g., antibodies, while allowing passage of
	essential molecules, e.g., oxygen, glucose, nutrients, insulin, and metabolites.
	For survival, islets need to be close to sources of oxygen and nutrients, and be
	protected against local inflammation, fibrosis, and oxidative stress. This is
	achieved by incorporating in the polymeric material of the encapsulating
	membrane vascularization, anti-inflammatory, anticoagulant and antioxidant
	agents. Some of these functional molecules added to the polymeric material act
	as scavengers for small molecules including cytokines, NO, and free radicals,
	which are known to be toxic to the islets
•	A valveless pump, with no interior mechanical parts, and shown to transport
	mammalian cells without the slightest damage (Yamahata, C. et al, 2005), is
	used to generate "selective withdrawal" flow and remove the encapsulated
	islets. It is a diaphragm pump that uses two diffusers as flow directing elements
	and a pump chamber, the top of which is made out of flexible material. An
	actuator, piezoelectric (PZT) patch or an electromagnet, bonded to the top of
	the pumping chamber with epoxy resin, is used in connection with applied AC
27-1	₁₋ ygltage to set the top plate into vibration at a frequency, below the natural
	frequency of the material the plate

Clir	na Change
•	Clima change: a result of unbalanced development
•	Clima change in combination with human activities hostile to environment and
	natural disasters leads to desertfication and deforestation impacting water supply, agriculture, and food chain
•	Model of development based on market only leads to behaviors of over-
	consumption, and over-production without any regard for natural and human resources
Sus	tainable Development
•	According to Brundtland Commission, " <u>Sustainable development</u> is the development that satisfiew the needs of the present, without downgrading the ability of the future generations to satisfy their needs"
	For rational Sustainable Development ("Green Development" not "Green Horses"), one needs to keep in mind:
1.	Fuel based on chemistry of an element other than carbon, e.g., hydrogen, is beyond technological reach at present,
2.	If a country has reserves of fossil fuel, it is bound to use them,
3.	1 gal of gasoline has the same energy content with 5 acres of crops for food
4.	Laws of Thermodynamics govern the direction of change and the efficiency of
	transformation

The Atmosphe	ere	ui Liig	meerin	<u>g. cu</u>	mu Cr	ung		iergy
Life on earth de solar radiation	pends on: (1) between earth	existen	ce of the	e atmo ••	sphere	, and	! (2) a a	lelicate balance of
	Absorptio	n + Tra	pping –	Emiss	ion =	Surp	lus or 1	Deficit
Atmosphre :	72	+	150	-	330	=	- 108	W/m^2
			92 (Eva	porat	ion) +	16 (1	Therma	l Convection) W/m ²
Earth :	168	+	330	-	390	=	108	W/m^2
	<u>Pure dry a</u>	ıir	(% vo	<u>ol.)</u>				
	<i>N2</i>		78,08					
	02		20.95					
	Ar		0.93					
	<i>CO2</i>		0.03	5				
	Ne		1.8 x	: 10 -3				
	Не		5 x 1	0-4				
	Kr		1×1	0-4				
	Xe		1×1	0-5				
	CH4		2×1	0-4				
27-11-09	<i>N20</i>		3 x 1	SA15				
	<i>C0</i>		1x	0-5				

Г

Ozon & Greenhouse G	ases	
<u>O</u> <u>O</u> in the atmosphere cause destructive mu	tations to living cells	ents it from reaching the earth to
Greenhouse gases, p	rimarily <u>CO2</u> trap <u>infrared rad</u>	iation and keep temperature on
earth's surface at lev	els that allow maintenance of	life
<u> Time</u>	<u>Atmospheric CO2 , ppm</u>	<u>Characterization</u>
130.000 – 12.000 BCE	180	ice age
2.000 ткр — 1800	280	warm age
2000*	380	warm age
???	<i>480</i>	superheated age**
* Ρυθμός αύξησης CO ** Earth an entirely difj	2 = 2 ppm / έτος ferent planet than it has been f	or the last 10,000,000 years

New Paradigms in Chemical Engineering: Clima Change & Energy
Optimization Problem
$\min(c_{ML} m_{ML,i} e_L + c_{PV} E_{PV,i} + c_w E_{w,i}) \qquad i = N + 1, N + 2, \dots, NN$
$m_{ML,i}e_L + E_{PV,i} + E_{W,i} = E_{ip,i} - E_{ip,N}$ $i = N + 1,, NN$
$m_{ML,i} g_L + E_{PV,i} g_{PV} + E_{W,i} g_W = \alpha (G_i - G_{max})$ $i = N + 1,, NN$
$c_{ML} = cost$ of producing electric energy from lignite with CO2 trapping, $20 \notin / tn$ lignite $e_L = electric$ energy produced from 1 tn $\lambda i\gamma v(\tau \eta, 500 \text{ kWh} / tn c_{PV} = cost$ of producing electric energy with phtovoltaics (PV), $4.3 - 9.5 \notin /Wh$ $E_{PV,i} = kWh$ electric energy produced from PV in year i
$E_{W,i} = kWh$ electric energy produced from wind in year i
$E_{lp,i}$ = electric energy in kWh produced in year I $g_L = 0.56$ tn CO ₂ / tn lignite
$g_{PV} = 0.6 \text{ kg } CO_2 / kWh$ emissions decrease because of PV production
$g_W = 600$ tn CO ₂ /GWh emissions decrease because of wind energy production
a = percentage of electric energy produced from fossil fuels (lignite,oil, natural gas), 0.813
$G_{max} = \beta G_{1990}$, $\beta = 1.25$ (Greece's obligations in compliance with Kyoto Protocol) $G_{1000} = emissions tn CO2 in the 1990's$
$G_{27-110}^{22} G_2$ emitted in year i DH

New Paradigms in Chemical Engineering: Clima Change & Energy

<u>Solution with differential evolutionary algorithm</u> (Homaifar et al, 1994) Table shows:

1. Lignite quantity in year i, in tn, $m_{L,i} = E_{lp,i} / e_L$, and

27-11-09

2. Only a fraction $(m_{ML,i}/m_{L,i} < 1)$ of production units from lignite needs to be upgraded for trapping of CO₂

Year	E _{PV,i}	E _{W,i}	m _{ML,i}	E _{Ip,i}	m _{Li}
	kWh	kWh	tn	kWh	tn
2006		8.21E+06	1.24E+06	5.69E+10	1.14E+08
2007		7.60E+05	5.00E+06	5.93E+10	1.19E+08
2008		1.36E+06	5.51E+06	5.96E+10	1.19E+08
2009	2.11E+09		6.00E+06	6.20E+10	1.24E+08
2010	2.95E+09		6.40E+06	6.31E+10	1.26E+08
2011	4.52E+09		6.52E+06	6.48E+10	1.30E+08
2012	6.15E+09		6.63E+06	6.65E+10	1.33E+08
2013	7.56E+09		6.82E+06	6.80E+10	1.36E+08
2014	8.96E+09		7.02E+06	6.96E+10	1.39E+08
2015	1.04E+10		7.21E+06	7.11E+10	1.42E+08
2016	1.18E+10		7.41E+06	7.26E+10	1.45E+08
2017	1.32E+10		7.60E+06	7.41E+10	1.48E+08
2018	1.46E+10		7.80E+06	7.57E+10	1.51E+08
2019	1.60E+10		8.00E+06	7.72E+10	1.54E+08
2020	1.74E+10		8.20E+06	7.87E+10	1.57E+08
2021	1.88E+10		8.39E+06	8.03E+10	1.61E+08
2022	2.02E+10		8.60E+06	8.18E+10	1.64E+08
2023	2.16E+10		8.78E+06	8.33E+10	1.67E+08
2024	2.30E+10		8.97E+06	8.48E+10	1.70E+08
2025	2.44E+10		9.17E+06	8.64E+10	1.73E+08

Accord	ing to Ed Cussler,	8 th World Congres	ss of Chemical Engineering:
Process batch v input/ou recycle separat	<u>s Design</u> : How to n s. Continuous utput ion/heat	aake?	<u>Product Design</u> : What to make customer need idea generation selection manufacture
Key Basis Risk	<u>Commodities</u> Cost Unit Ops Feedstock	<u>Molecules</u> Speed Chemistry Discovery	<u>Functional</u> Function Microstructure Science
27-	.11-09		DH

