

C	Outline	
≻	Introduction	
	 A Roadmap to Nasal Vaccine Delivery Systems Synthesis and In-vitro Studies of Nanocariers 	
≻	Computational Fluid Dynamics (CFD)	
	 ✓ CFD Formulation ✓ Cases Studied 	
≻	Particle Simulation	
	 Particle Tracking in the Nasal Cavity Particle Deposition 	
≻	Drug Release Model	
	 Description and Model Predictions 	
≻	Conclusions	
CPE	CPERI/AUT Laboratory of Polymer Red	action Engineering

Sample	Av. Diam. (nm)	Zeta potential (mV)	OVA loading (%wt)	MPLA loading (%wt)
DE-RG752H-OVA-MPLA-002	338	-15.7	9.17	0.182
DE-RG752H-OVA-MPLA-003	381	-11.7	10.25	0.165
DE-RG752H-OVA-MPLA-004	444	-14.3	3.11	0.187
DE-RG752H-OVA-MPLA-011	325	-22.3	1.07	0.177
DE-RG752H-OVA-MPLA-007	416	-18.2	9.29	0.909
DE-RG752H-OVA-MPLA-005	341	-16.7	2.97	0.809
DE-RG752H-OVA-MPLA-006	329	-25.2	0.82	0.640
DE-RG752H-OVA-MPLA-009	304	-20.0	0.106	0.798
DE-RG752H-OVA-MPLA-012b	296	-23.2	1.42	1.081
DE-RG752H-OVA-MPLA-012c	294	-27.0	1.456	0.952
DE-RG752H-OVA-MPLA-010	303	-21.6	0.116	1.75
OVA loading: 0.1 - 10 %wt				
MPI A loading: 0.16 - 1.75 %wt				

	Functional	lization		
	PLGA NPs containing OVA and MP were functionalized with wheat isothiocyanate (WGA-FITC) by the ca	LA (DE-RG germ aថ rbodiimide r	752H-OVA gglutinin method.	A-MPLA-005,6) - fluorescein
	Sample	Av. Diam. (nm)	Zeta potential (mV)	FITC-WGA (%wt)
	DE-RG752H-OVA-MPLA-FWGA-006a	356	-22.8	0.146
	DE-RG752H-OVA-MPLA-FWGA-007a	398	-30.6	0.138
	DE-RG752H-OVA-MPLA-FWGA-0010a	_	-	0.230
CPERI/AU	r	Lab	oratory of Poly	mer Reaction Engineeri

C			Computationa	al Gric		
		Mesh Geo as implem	metry was constructed in Gambit ent by TGrid in Gambit).	using Tet	rahedra eleme	ents (i.e.,
		Meshes	Туре	Cells	Faces	Nodes
		M1	Basic	1.24 106	2.40 106	0.26 106
		M2	Basic with outflow tube	1.27 106	2.63 106	0.26 106
		M3	Basic with inflow tube	1.32 106	2.74 106	0.27 106
		M4	Basic with refined surface region	1.61 106	3.51 106	0.43 106
		M5	Polyhedra	0.27 106	1.76 106	1.46 106
	Different grids were constructed: with different types and numbers of cells (M1 and M5), with a cylindrical section attached to the inlet/outlet faces (M2 and M3), and with a refined surface region (M4).					
		A cylindrical inlet tube was added (M3) to provide fully developed flow at the entrance of the nasal cavity.				
		A cylindrica boundary c	al outlet tube was added (M2) t onditions.	o avoid r	ecirculation at	t the outlet
СР	ERI/	AUT		Labora	tory of Polymer Red	action Engineering

	In vitro Toxicity Studies					
endotoxicity and haemocompatibility.						
	Sample	Av. Diam. (nm)	Zeta potential (mV)	OVA loading (%wt)		
	DE-RG752H-OVA-004	319	-19.5	0.255		
 ✓ The Ca than 400 ✓ The NP 	 ✓ The Caco-2 cells viability was found to reduce for concentrations greater than 400 µg/ml (MTS assay). ✓ The NPs cytotoxicity does not change by increasing their concentration up 					
to 500 µ	to 500 μg/ml (LDH release assay).					
The NPs were reported to be endotoxin-free (LAL & E-selectin induction)					uction)	
 No sign due to the sign d	 No significant alteration of the haematological parameters was observed due to the NPs. 					
CPERI/AUT			Laborator	y of Polymer R	eaction Engined	

