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Overview of Presentation

An overview of some of the pharma-sector challenges

Process Analytical Technologies:
Where have we come from?  Where are we now?,  Where are we 
going?

Some challenges in spectroscopic data pre-processing and modelling
Applications in Crystallisation and other industrial problems

Variability - Different Product Formulations, Recipes, Processing 
Units, Production Sites, Spectroscopic Probe Locations, ….

Closing the Analytical Control Loop

Closure



The EU provides 32% of the worlds chemicals manufacturing 

through some 25,000 enterprises of which 98% are SMEs which 

account for 45% of the sectors ‘added value’, and 46% of all 

employees are in SME

What does PAT, QbD and Real-Time-Release 
mean to an SME?



Benchmarks for Pharmaceuticals Companies

Benson R.S, From World Class Research to World Class Manufacturing: the Challenges, 
Pharmaceutical Eng. Sept/Oct 2005

Stock Turn - this is the total turnover on the site at manufacturing price divided by all the stocks on the site on the 
same basis. Stocks include finished goods, work in progress, and purchased raw materials; On Time in Full 
(OTIF) delivery - this is the percentage of orders that are satisfied on time in full with zero defects; Right First 
Time (RFT) - this is the percentage of the products that at the point of manufacture are delivered right first time 
with no defects; CpK - is a statistical process measure on the variability of the product; Overall Equipment 
Effectiveness (OEE) - this measures how effectively the manufacturing equipment is used.
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PAT and QbD

Courtesy Staffan Folestad AstraZeneca, APACT09



Design Space and Quality

Courtesy Staffan Folestad AstraZeneca, APACT09



Real Time Release (RTR)

Courtesy Staffan Folestad AstraZeneca, APACT09



The Principles of a ‘Process’ Systems Base Approach

Courtesy Staffan Folestad AstraZeneca, APACT09



Where are we in

Process Analytics and Control Technologies?



Heterogeneity

Heterogeneity can be influenced by the manufacturing process.

Different product variants arising

• from varying raw materials
• from upstream processing issues
• from downstream processing changes
• from utilities issues
• ………



Impurities and Polymorphism (Where we were in 1998)



Impurities and Polymorphism

Impurities effect nucleation and growth processes, and hence can
stabilise meta-stable polymorphic forms.

As product purity improves during process chemistry work-up, the 
“stable” polymorphic form can change !

e.g. RITONOVIR aids drug which changed from anhydrous to 
hydrate crystal after launch:

with lower solubility and hence bio-availability.

product was withdrawn for a year and reformulated.

new FDA approval needed – mega cost implication !



and Today (An FDA 483)



Variability with Different Scales, 

Product Formulations / Recipes, 

Different Spectroscopic Probe Locations, 

Different Processing Units, 

Across Different Production Sites, …

The Impact of Multi-dimensionality



Multi-Recipe (Formulation) Data

Industrial challenge – one weeks production: 50 different products. 
40 different recipes, 5 different production units. Example application of 
multiple group PCA and PLS with two formulations. Each process mixer 
is also considered as a separate ‘formulation’, hence the process model 
has 4 distinct groups.

Note: Formulation 2 has fewer raw materials and fewer process 
variables than Formulation 1

Recipe Group Mixer Number of
Batches 

Raw
Materials

Quality
Variables 

1 1 ( ) 1 19 23 1

2 (+) 2 21 23 1

2 3 (o) 1 20 17 1

4 (x) 2 29 17 1

Process
Variables

120

120

90

90

Recipe Group Mixer Number of
Batches 

Raw
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Quality
Variables 

1 1 ( ) 1 19 23 1

2 (+) 2 21 23 1

2 3 (o) 1 20 17 1

4 (x) 2 29 17 1

Process
Variables

120

120

90

90



Impact of Different Formulations 

The model contains within and between group variation. 
Subtle process events cannot be detected; the greater the number of 
distinct groups in the data set, the greater the impact of between group 
variation.

Principal Component 1
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Courtesy Unilever, Vlaardingen



The Impact of Multidimensionality in PAT, QbD
(Hence a Process Systems approach)

Courtesy Staffan Folestad AstraZeneca, APACT09



Agitator 

Location 1
Location 2
Location 3

Location 4

Spectroscopic Probe Location PCA Plot of Measured Spectra

Impact of Spectroscopic Probe Location
in a Reactor Vessel

A multi-group ‘generic’ calibration model can help overcome probe 
location issues
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The Impact of Inter-probe Variability

Spectra from different probes are distinct
Inter-probe variability is the greatest source



Variability – Modelling and Calibration Challenges
Process Issues:

Scaling up and reactor size and characteristics issues
Multiple or changing formulations (recipes)
Cell improvement; cell line changes; media changes
Equipment characteristics; site-to-site process differences, etc
Fluctuations in both control and external process variables
Limited experimental data due to time and cost limitations – hence 
small data sets from which to build models – learn from medical 
statistics and statistics used in clinical trials.

Analytical Issues:

Separating absorbance from multiplicative light scattering effects 
caused by the variations in optical path length
Inter probe variability: impact of component variance on PLS calibration 
– can probe differences be accomodated or eliminated?
Can calibration models be made generic for different production unit 
operations / production lines?



Variability (or PAT) by Edwards Deming

Cease reliance on mass inspection to achieve quality.

Eliminate the need for mass inspection by building quality 
into the product in the first place.

Dr W. Edwards Deming 
(Circa 1980s)

“Learning is not compulsory, …
…. Neither is survival”



In-Process Analytics & Process Control

CBB#2 Project: collaboration with 

Leeds, Heriot-Watt and Newcastle University

Partners
AEA Technology

AstraZeneca
Bede Scientific Instruments

BNFL
Clairet Scientific

DTI
EPSRC

GlaxoSmithKline
HEL

Malvern Instruments
Pfizer 

Syngenta
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Issues in Down-Stream Production Processes
(e.g. in Crystallisation)

Multi-sourced materials properties making up  feed-stocks 
impact on product processability:

hence on the properties of any formulated products 
made downstream. 
I.e. variability in feedstock results in variability of 
products.

Important solid-form properties:
physical - particle size / shape, hardness, density and 
plasticity
chemical - purity, polymorphic form, crystallinity, 
hygroscopicity

Clear need for flexible processes developed through 
QbD and controlled using PAT to ensure reproducible 
processes producing highly consistent quality product 
suitable for Real-Time-Release into the Patient.



Reactor Scale-Up: Effects on Nucleation Processes
Nucleation promoted via sites within 
crystallisation reactor such as at:

Walls of vessel & at liquid free 
surfaces
Stirrer and reactor internals such as 
baffle surfaces and impellers

Hetero-nuclei, e.g. impurities, particulates, 
seeds etc.
Particle/particle and reactor/particle 
collision attrition fragments 
Process in-homogeneities due 
hydrodynamics and reactor mixing
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nucleation being enhanced by 
greater mixing



Cooling Profiles

The Impact of Cooling 
Profiles on CSD

Utilities are often the ‘forgotten’ area



Advanced Chemometric Methods
For Assured Process Analytics Applications



Fluctuations   in External Variables on Calibration Models
In process analytical applications, spectral measurements can be subject to 
changes in process temperature, flow turbulence, compactness, and other 
external variations.

Typically, variations of external variables influence spectral data in a non-
linear manner which leads to the poor predictive ability of bilinear 
calibration models on raw spectral data. 

The influence of external variables on spectral data we classify into two 
different modes:

multiplicative influential mode, and
composition-related influential mode

A new chemometric method, Extended Loading Space Standardization 
(ELSS), has been developed to explicitly model these two kinds of 
influential modes.



Spectral Calibration Issues
Spectroscopic measurements in chemical and pharmaceutical processes 
are always liable to fluctuations in both control and external process 
variables.

This can result in noisy spectra, non-linear shifts, broadening in spectral 
bands and multiplicative light scattering perturbations.

X-ray diffraction profiles of  
mannitol-methanol 
suspensions with the content 
of mannitol varying from 
0.0% to 5.0% g/ml.
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Five NIR spectra for a ternary 
mixture sample measured at 
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Shift and broadening 
in spectral bands
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Smoothed Principal Component Analysis (SPCA)
SPCA: Enhancing the Signal to Noise Ratio of X-ray Diffraction Spectra of 
Glutamic acid-methanol suspensions system.

L-Glutamic acid morphology: 
prismatic α-form and needle-like 
β-form crystals

Water jacket
linesThermocouples

Flow 
cell

Microsource®

INEL X-Ray 
Detector

α-form

β-form

Pump

Inlet and 
return pipes

Reactor

Magnetic 
stirrer

Flow loop 
to flow cell
Water jacket 

lines

Experimental set-up and on-line 
X-ray diffraction system



Smoothed Principal Component Analysis (SPCA)

Enhancing signal-to-noise ratio
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Raw (a) and Processed (b) XRD profiles (by SPCA) for 6 XRD data sets of 
mannitol-methanol suspensions with the contents of mannitol equalling to 
0.0%, 0.178%,   0.389%, 0.533%, 0.8% and 1.0% g/ml, respectively



Case  – SPCA in Morphology Monitoring
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The raw (a) and pre-processed (b) XRD profiles of the beta form of GA-
methanol slurries with concentration varying from 0.02% to 8.00%; The 
relationships between concentrations and peak heights at peaks B3 of the raw 
(c) and processed (d) spectra.
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Bede MONITORTM In-process XRD
Crystal Polymorph Monitoring & Control

Typically circa 1 wt % detectable via 
in-process XRD, much lower with 
advanced chemometric analysis 
(Smoothed PCA)
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that unaffected by product separation 
prior to analysis.



Loading Space Standardisation (LSS)
Correcting temperature-induced spectral variations for ATR-FTIR data in 
crystallization process monitoring. 

ATR-FTIR

FTIR
PC

Control 
PC

Temperature Probe

Thermo-stated Bath

Turbidity Probe

pH Probe

ATR-FTIR

Control PC

Condenser bath

1/2 L Crystalliser

Stirrer motor

Turbidity and pH Probes

Temperature probe ATR-FTIR PC

Heating/Cooling unit

20 L Crystalliser



Loading Space Standardisation (LSS)
Correcting non-linear shift and broadening in spectral bands caused by 
temperature fluctuations:
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250l Pilot Plant Batch Agitated Vessel

Outlet (8mm) port Inlet (12mm) port

α-sizer



Münchwilen Foxboro Control System as Set-Up for 
CBBII Trial on 250 Litre Reactor R-122
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Supersaturation Control System Upgrade to PI Capability
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Supersaturation Control of L-Glutamic Acid
250 litre Plant Crystalliser
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Optical Path-Length Estimation and Correction (OPLEC)
Separating absorbance from multiplicative light scattering effects 
caused by the variations in optical path length
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OPLEC has recently been applied in Raman Scattering applications

OPLEC

NIR spectra of five gluten/starch mixtures in 20 replicates (left) with different compactness 
and the corresponding NIR spectra processed by OPLEC (right)
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9-component PLS Model on Raw Spectral Data 2
versus   2-component PLS Model Pre-processed by OPLEC
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Predictive Performance of the PLS Models 
Standard PLS model;      Calibration spectra pre-processed by OPLEC
Martens  EMSC Selection 1;      Martens EMSC Selection 2;  EISC  
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EMSC - Extended Multiplicative Scatter Correction;  EISC - Extended Inverted Signal Correction



Closing the Analytical Control Loop

Incorporating PAT Sensors into Real 
Time Process Control



PAT and Advanced Process Control - Why we’re here

PAT is part of a tool box to optimise the way pharmaceuticals are 
manufactured
Provide greater understanding of the process and what to control
Potentially provide a means to control “Critical Attributes” by monitoring and 
adjusting “Critical Parameters” in real time
Provides some of the ability to reduce the risk of process variability effecting 
process capability and product quality

Variable Process

Variable Process Model

Consistent Output
Variable Raw Material

Input to process

Continuous Quality Verification

Current Model

Fixed ProcessVariable Raw Material
Input to process Variable Output



Univariate Data Quality Monitor:

Individual Signal Validation
Logical Checks
Statistical checks

Multivariate: Using Robust PCA

Outlier detection
Outlier Identification
Data Quality Monitoring

Data Quality Monitoring 

Data Quality Records Underpin the Validity of the System
– Critical in a Validated Environment

21 CFR Part 11 Records

Courtesy Perceptive Engineering



Clean Data Set

Real Time Quality Control 
(Using Spectral Data)

Spectral Data

Spectral Data

Data 
Quality 
Monitor

Process Data

Discrete Data

21 CFR Part 11 Records

Imported from
Model Development File

Real Time
Pre-

Processing



Design Space

Control Space

PLS/PCA 
Calibration 

Model

Dynamic
PCA 

Controller

Spectral Data

Process Data

Discrete Data

Real time pre-processed data • Continuously measured OR
• a-periodically measured OR
• real time value Inferred from 

calibration model OR
• end-point value inferred from 

calibration model OR
• scores of calibration model 

are C-t-Q parameters

C-t-Q Parameters

Real Time Quality Control 
and Integrated Data Management

Courtesy Perceptive Engineering



PAT in Closed Loop Process Control - Some Challenges
Real-time management of process and spectroscopic data.

Real time robust fit-for-purpose ‘transferable’ calibration models.

No control system is going to control a spectrum of several hundred 
simultaneous values; so what is important?

Is there is a robust fit-for-purpose calibration model to infer specific 
product properties?
Are there particular features / segments of the spectrum of interest?

What is the impact of process control on spectroscopic calibration & 
modelling? e.g. temperature, light scattering effects, etc on control loop 
performance?

What is the impact of auto correlated data on the reliability and fitness-for-
purpose of spectroscopic calibrations and on-line statistical performance 
monitoring models on product and process understanding and manufacture

the usual assumptions that the observations are Independent and 
Identically Distributed (IID), are inappropriate



Process Analytics – An Observation

Process Analysis is restricted to large companies while 98% of chemicals 
manufactured in Europe is by SME’s, primarily in Batch Plants

While 

Lambda Sensor
Mercedes S Class costs €100!

Courtesy Professor Roger Benson EUROPACT 2008

A Mercedes S Class -
€100,000

Costs the same as

A FTIR – €100,000

and a Process Oxygen 
Analyser costs €15,000



Smart PAT, QbD and RTR
is Smart Process Systems Engineering

And Needs

Smart Miniaturised Process Analytics
Smart Modelling / Smart Chemometrics

Smart Process Control and Optimisation 

& Smart (Responsive, Flexible, Intensified) Processing 

So, Where do We Need to Go ?



Process Analytics - 2020

Miniaturised, self-cleaning, selective wavelength spectroscopy systems the 
standard at very competitive costs.

Open spectral data handling software across all analysers.

Much better use made of the spectral data integrated with process data.

Specific calibration built into each analysers with the ability to identify 
changes and proactively update.

and for SME manufacturers, all remotely monitored, checked, validated 
and re-calibrated.
e-Pharmaceuticals Manufacturing

Opportunities for measurements and standards - Molecules to 
Manufacturing.

Motivated by Professor Roger Benson EUROPACT 2008



Advances in PAT Tools

Time Resolved NIR Spectral Data extends spectroscopy into the time domain

Courtesy Staffan Folestad AstraZeneca, APACT09



Intensified Processing - Bioproduction

Liquid feed IN
Gas IN

Liquid collector
(outlet/recycle)

Liquid feed distributor
Air distributor

Packing

Liquid OUT (into 
recycle loop)

Gas OUT

Slip ring assembly

134 
mm

Rotor unit

Rotor shaft

244 mm

Liquid feed IN
Gas IN

Liquid collector
(outlet/recycle)

Liquid feed distributor
Air distributor

Packing

Liquid OUT (into 
recycle loop)

Gas OUT

Slip ring assembly

134 
mm

Rotor unit

Rotor shaft

244 mm

Knitted wire 
mesh packing 

Liquid 
distributors

Stainless 
steel rotor  

Gas 
distributor 

Rotating Packed Bed Hi-G Bioreactors



Intensified Processing - Bioproduction

Oscillatory Baffled Bio-reactor
Courtesy CPI



Potential Savings with PAT in Bio-pharma

Courtesy P Galliher, Potential Benefits of PAT for Biomanufacturing, IFPAC 2005



Closure and Thanks
In this talk,  I have tried to…

Introduced the concept of PAT, QbD and RTR within a Process Systems 
Engineering framework leading to faster scale-up (scale-down), assured 
product quality and reproducibility and enhanced manufacturing.

Highlighted some Process Analytical Technologies through work aiming to 
improve the understanding of process variability resulting in enhanced 
calibration models, enhanced process understanding and assured closed 
loop process monitoring and control. 

Shown the utility of combining a number of process analytical technologies 
for real-time closed loop batch cooling crystallisation monitoring and control 
in an industrial pilot plant, and other key industrial issues.

….     And I hope, shown how they might contribute to moving:

“From Shake Flask to Multi-kilos – Faster, Better and Sustainably
Through a Process Systems Approach”



Many thanks to the organisers for their kind invitation
and of course you, the audience, for your kind attention

Best wishes to Professors Anastasios Karabelas
& Stavros Nychas on  their well deserved retirement

I will be most happy to attempt to answer questions

Acknowledgements: EU FP6 NMP Sustainable Microbial and Biocatalytic
Production of  Advanced Functional Materials (BIOPRODUCTION) and all my 
CPACT research colleagues past and present



Proteins Grown in Space  Can Help Understand Disease

Courtesy Prof Al Sacco & Dr Catherine Coleman,  
Space Scientists


