

Identification of natural bioactive compounds to promote the biodiversity of French Riviera

Elise Sarrazin, PhD

Laboratoire de Chimie des Molécules Bioactives et des Arômes (LCMBA) UMR CNRS/UNS 6001, Institut de Chimie de Nice

elise.sarrazin@unice.fr

What is biodiversity?

Neologism proposed at UN Earth Summit of Rio de Janeiro in 1992

 Biodiversity (also called biological diversity) is the degree of variation of life forms within a given ecosystem, biome, or an entire planet

Biodiversity, a great chance of development for the région Provence-Alpes-Côte d'Azur (PACA)

- The Mediterranean Basin is one of the 34 biodiversity « **hot spots** ».
- The PACA region is situated at a phytogeographical corner between the Alps and the Mediterranean Sea.

- ✓ The PACA region contains 2/3 of the biodiversity of Metropolitan France.
- ✓ In particular, the Maritime Alps are the most important endemic center of the whole Alps.

Laboratoire des Molécules Bioactives et des Arômes

✓ Main research topics

- Analysis of natural extracts (historically great expertise in the field of Flavors and Fragrances)
- Discovery of new molecules from natural extracts (plants, flowers, fruits, roots,...)
- Focused properties:
 - organoleptic (odor, flavor)
 - bioactive (antioxidant, antimicrobial)

✓ Our work strategy is always divided into three steps

- 1. Extraction
- 2. Fractionation (purification)
- 3. Characterization (identification)

1. Extraction

- = enrichment
- Decoction in various solvents (water, alcohol...)
- Soxhlet
- Hydrodistillation

•...

Infusion

http://olharfeliz.typepad.com/cuisine/2007/08/index.html

Distillation

http://fabricationdesparfums.com/?p=51

1. Extraction

- = enrichment
- Decoction in various solvents (water, alcohol...)
- Soxhlet
- Hydrodistillation

•...

2. Fractionation = isolation

- Ultrafiltration
- Ion-exchange resins
- SPE
- High Performance Liquid Chromatography (HPLC)

2. Fractionation = isolation

- Ultrafiltration
- Ion-exchange resins
- SPE
- High Performance Liquid Chromatography (HPLC)

Ultrafiltration

Separation based on size

Membrane

lon-exchange

Separation based on electrical charge

1. Extraction

- = enrichment
- Decoction in various solvents (water, alcohol...)
- Soxhlet
- Hydrodistillation

• ...

2. Fractionation = isolation

- Ultrafiltration
- Ion-exchange resins
- SPE
- High Performance Liquid Chromatography (HPLC)

3. Identification

- Nuclear Magnetic Resonance (NMR)
- Infrared
- Mass spectroscopy

3. Identification

- Nuclear Magnetic Resonance (NMR)
- Infrared
- Mass spectroscopy

NMR: Atom linking and environment

Mass spectrometry (MS):

Molecular mass of the compound and raw formula

Presentation of 2 current projects aiming at promoting local biodiversity

- Identification of new bioactive compounds dedicated to oral care.
- Financial support from the Local Council of Maritimes Alpes

- -Collaborations:
- Laboratory of Oral Microbiology (LOM)
- Solidages

- Development of original and natural preservatives for cosmetics and nutraceutics
- Labelled by the PASS Cluster (APRF 2009)

- Collaborations:
- Sofia Cosmétiques
- NATUREX

2. Solidago Project: Introduction

- ✓ Project launched in January 2010 (PhD thesis of Lise Laurençon)
- ✓ <u>Development of a mouthwash to prevent senior and medicated patients from candidosis</u>
 - → Objective: Inhibiting the pathogen form (hyphae) of Candida albicans while preserving its commensal form (yeast-like), as well as the other bacteria of the oral biofilm.

⇒ A local plant **Solidago virgaurea** (Asteraceae) was shown to present interesting results and was selected to be further investigated.

2. Solidago Project: Solidago virgaurea subspecies

Solidago virgaurea virgaurea

- Height: up to 1m
- Ramified floral scape
- Europe (0 to 1500 m)

Various publications

+ Phytotherapy patents:

Antiviral (H1N1), coagulative, fongicide, natural latex (cosmetics) ...

Solidago virgaurea alpestris

- Height: up to 40cm
- No ramification
- Alpine areas (1600 to 2700 m)

No phytochemical study But plant available in the Maritim Alps 2. Solidago Project: Experimental Protocol Performed

⇒ Fractionation step-by-step to isolate the active molecules

2. Solidago Project: Experimental Protocol Performed

⇒ Fractionation step-by-step to isolate the active molecules

Characterization of the chemical composition of the fractions using HPLC (High Performance Liquid Chromatography)

HPLC prep

Active fraction

Pure active compounds

Decoction

Fractionation

Raw aqueous extract

Plant

Bioassays after 24h and 48h incubation:

- Hemolysis in agarose gel
- Counting of Candida colonies
- Study of the percentage of Candida filament formed

2. Solidago Project: Experimental Protocol Performed

Fractionation

⇒ Fractionation step-by-step to isolate the active molecules

Characterization of the chemical composition of the fractions using HPLC (High Performance Liquid Chromatography)

HPLC prep

Pure active compounds

Identification in progress

Optimization of the extraction process

Decoction

Raw aqueous extract

Plant

- ✓ Project launched in January 2011

 (PhD Theses of Florence Merck and Audrey Kerdudo)
- ✓ Inventory of the medicinal and aromatic plants of the PACA region and screening for bioactive plants (preservative: antimicrobial, and/or antioxydant)
- ⇒ Objective: identify original natural bioactive compounds in order to propose new preservatives for cosmetics and nutraceutics.

⇒ Two activity tests:

- chemical: focused on antioxydant activity
- microbiological: antimicrobial activity

3. NATUBAVAL Project: Screening for antioxydant compounds

Colorimetric test using **DPPH** (2,2-diphenyl-1-picrylhydrazyl)

Free radical = anti-oxydant
$$O_2N$$
 O_2N O_2N

Experimental strategy:

- 1. Screening for anti-oxydant extracts using DPPH test
- 2. Fractionation guided by DPPH test
- 3. Isolation of the active compounds

3. NATUBAVAL Project: Screening for antimicrobial compounds

✓ 4 microorganisms selected from European Pharmacopy

- Aspergillus niger (fungus)
- Candida albicans (yeast)
- Staphylococcus aureus (bacteria Gram +)
- Pseudomonas aeruginosa (bacteria Gram -)

Picture from BioPreser

Dilution method:

- Homogenous dispersion of the plant extract in a microorganism-selected medium using 96-well plates.
- Turbidity taken as an indicator of bacterial density.
- Turbidity measured after 24h, 48h and 72h of incubation
- Grade of microbial inhibition related to the turbidity of the medium and measured by spectrophotometry

3. NATUBAVAL Project: work in progress

Nature is still a great source of inspiration for the development of new bioactive ingredients

Aknowledgements

THANK YOU!

