Modeling and Simulation of Viscoelastic Flows in Polymer Processing with Integral Constitutive Equations

Evan Mitsoulis

CAMP - R&D

Computer-Aided Materials Processing – Rheology & Design School of Mining Engineering and Metallurgy National Technical University of Athens Athens, Greece

Molecular Structure

Processing

Product (Structure-Properties)

A. GOVERNING FLOW EQUATIONS (Conservation equations)

A1. Equation of conservation of mass

$$\nabla \cdot \overline{v} = 0$$

A2. Equation of conservation of momentum

$$\rho \overline{v} \cdot \nabla \overline{v} = -\nabla p + \nabla \cdot \overline{\tau} + \rho \overline{g}$$

A3. Equation of conservation of energy

$$\rho C_p \overline{v} \cdot \nabla T = k \nabla^2 T + \overline{\tau} : \nabla \overline{v}$$

B. RHEOLOGICAL MODEL (Constitutive equation)

$$\bar{\tau} = f(\bar{v}, \nabla \bar{v})$$

20:1 Axisymmetric Contraction HDPE

τ_w = 0.1 MPa

Bagley and Birks, J. Appl. Phys., 1960

INTEGRAL CONSTITUTIVE EQUATIONS

$$\overline{\overline{\tau}}(t) = \int_{-\infty}^{t} \left[\mathbf{M}_{1}(t-t',\mathbf{I}_{C^{-1}},\mathbf{I}_{C}) \,\overline{\overline{C}}_{t}^{-1}(t') + \mathbf{M}_{2}(t-t',\mathbf{I}_{C^{-1}},\mathbf{I}_{C}) \,\overline{\overline{C}}_{t}(t') \right] dt'$$

where:

 $M_1, M_2 = material - property functions$ t = present timet' = past time $I_{C^{-1}}, I_{C} = first invariants$ $\overline{\overline{C}}_{t} = Cauchy - Green \ tensor$ $\overline{\overline{C}}_{t}^{-1} = Finger \ strain \ tensor$

Particle Tracking

Х

0

x'

INTEGRAL CONSTITUTIVE EQUATIONS K-BKZ EQUATION

• Kaye (1962), Bernstein-Kearsley-Zapas (1963)

$$\overline{\overline{\tau}}(t) = \int_{-\infty}^{t} \left[\frac{\partial U(t-t', I_{C^{-1}}, I_{C})}{\partial I_{C^{-1}}} \overline{\overline{C}}_{t}^{-1}(t') - \frac{\partial U(t-t', I_{C^{-1}}, I_{C})}{\partial I_{C}} \overline{\overline{C}}_{t}(t') \right] dt'$$

• Factorized K-BKZ proposed by White and Tokita (1967) $\overline{\overline{\tau}}(t) = \int_{-\infty}^{t} m(t-t') \left[\frac{\partial V(I_{C^{-1}}, I_{C})}{\partial I_{C^{-1}}} \overline{\overline{C}}_{t}^{-1}(t') - \frac{\partial V(I_{C^{-1}}, I_{C})}{\partial I_{C}} \overline{\overline{C}}_{t}(t') \right] dt'$

where: U = potential function m(t-t') = time - dependent function V = strain - dependent function $\overline{C}_t^{-1} = Finger strain tensor$

The Faces behind the Names

Barry Bernstein, Elliot Kearsley and Louis Zapas at the Rochester Society of Rheology meeting in 1991.

From Rheology: An Historical Perspective, R.I. Tanner & K. Walters, Elsevier, 1998.

INTEGRAL CONSTITUTIVE EQUATIONS RIVLIN-SAWYERS EQUATION

- Rivlin and Sawyers (1971) $\overline{\overline{\tau}}(t) = \int_{-\infty}^{t} \left[W_1(t-t', I_{C^{-1}}, I_C) \ \overline{\overline{C}_t}^{-1}(t') + W_2(t-t', I_{C^{-1}}, I_C) \ \overline{\overline{C}_t}(t') \right] dt'$
 - Factorized R-S $\overline{\overline{\tau}}(t) = \int_{-\infty}^{t} m(t-t') \left[H_1(I_{C^{-1}}, I_C) \ \overline{\overline{C}}_t^{-1}(t') + H_2(I_{C^{-1}}, I_C) \ \overline{\overline{C}}_t(t') \right] dt'$

where: W = not the potential function $I_{C^{-1}}, I_C = first invariants$ m(t-t') = time-dependent function $\overline{\overline{C}}_t = Cauchy - Green tensor$ H = strain-dependent function $\overline{\overline{C}}_t^{-1} = Finger strain tensor$

INTEGRAL CONSTITUTIVE EQUATIONS Special Cases of the Factorized RIVLIN-SAWYERS EQUATION

Wagner Model (1980)

$$M = \left[\sum_{k} \frac{a_{k}}{\lambda_{k}} \exp(-\frac{t-t'}{\lambda_{k}})\right], \quad H = \exp\left(-\beta \sqrt{\alpha I_{C^{-1}} + (1-\alpha)I_{C} - 3}\right)$$

Papanastasiou-Scriven-Macosko (PSM) Model (1983)

$$M = \left[\sum_{k} \frac{a_{k}}{\lambda_{k}} \exp\left(-\frac{t-t'}{\lambda_{k}}\right)\right], \quad H = \left[\frac{\alpha}{\left(\alpha - 3\right) + \beta I_{c^{-1}} + (1-\beta) I_{c}}\right]$$

where:

 $\lambda_k = relaxation time$ $a_k = relaxation modulus$ $\alpha, \beta = material constants$ $I_{C^{-1}}, I_{C} = first invariants$ $\overline{\overline{C}}_{t} = Cauchy - Green tensor$ $\overline{\overline{C}}_{t}^{-1} = Finger strain tensor$

٦

Relevant Literature

- Kaye, A. (1962) Non-Newtonian Flow in Incompressible Fluids, Part I: A General Rheological Equation of State; Part II: Some Problems in Steady Flow, Note No. 134, College of Aeronautics, Cranford, UK.
- Bernstein, B., Kearsley, E.A., and Zapas, L. (1963) A Study of Stress Relaxations with Finite Strain, *Trans. Soc. Rheol.*, 7, 391-410.
- Papanastasiou, A.C., Scriven, L.E., and Macosko, C.W. (1983) An Integral Constitutive Equation for Mixed Flows: Viscoelastic Characterization, J. Rheol. 27, 387-410.

Olley, P. (2000) An adaptation of the separable KBKZ equation for comparable response in planar and axisymmetric flow, *J. Non-Newtonian Fluid Mech.*, **95**, 35-53.

Numerical Methods (2-D)

- u-v-p formulation (primitive variables)
- + u-v-p formulation (SI)
- mixed formulation (u-v-p-τ) (EVSS)
- + enhanced mixed formulation (u-v-p-τ-g) (DEVSS-G)
- many others (EEME, SI, EVSS/SUPG, EVSS/SU, AVSS/SI, AVSS/SUPG, etc.)

Numerical Methods (3-D)

- 3-D x-y-z-p-t formulation (primitive variables)
- Lagrangian Integral Method (LIM)
- H.K. Rasmussen, "Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models", JNNFM, 84, 217-232 (1999).

Parameters for Fitting Data for the IUPAC-LDPE Melt

Pom-Pom

<u>K-BKZ (PSM)</u>

k	λ _k (s)	a _k (Pa)	$\mathbf{q}_{\mathbf{k}}$	$(\tau_{b}/\tau_{s})_{k}$
1	0.0001	1.29x10⁵	1	4.5
2	0.001	9.48x10 ⁴	1	3.9
3	0.01	5.86x10 ⁴	2	3.7
4	0.1	2.67x10 ⁴	2	3.6
5	1.0	9.80x10 ³	3	2.9
6	10.0	1.89x10 ³	7	2.0
7	100.0	1.80x10 ²	8	2.1
8	1000.0	1.00x10 ⁰	9	1.3

Inkson, McLeish, Harlen, Groves, J. Rheol. (1999)

k	λ _k (s)	a _k (Pa)	$\alpha_{\mathbf{k}}$	β_k
1	0.0001	1.29x10 ⁵	14.38	0.018
2	0.001	9.48x10 ⁴	14.38	0.018
3	0.01	5.86x10 ⁴	14.38	0.08
4	0.1	2.67x10 ⁴	14.38	0.12
5	1.0	9.80x10 ³	14.38	0.12
6	10.0	1.89x10 ³	14.38	0.16
7	100.0	1.80x10 ²	14.38	0.03
8	1000.0	1.00x10 ⁰	14.38	0.002

Barakos and Mitsoulis, J. Rheol. (1995)

Elongational Viscosity

Pom-Pom

K-BKZ (PSM)

$$\gamma_{\alpha}$$
 = 84 s⁻¹, τ_{w} = 0.1 MPa

HDPE Melt (0803-1 at 150°C) K-BKZ Model Original Fit

A non-linear regression analysis is performed on the K-BKZ integral constitutive equation to determine the parameters in the model.

HDPE Melt (0803-1 at 150°C) K-BKZ Model Parameters

Original Fit

k	λ _k (s)	a _k (Pa)	α_{k}	β _k
1	0.001723	5.46x10 ⁵	4.0	0.9985
2	0.01299	1.73x10⁵	4.0	0.9985
3	0.08644	2.15x10 ⁴	4.0	0.9985
4	0.7991	7.69x10 ²	4.0	0.9985
5	9.398	1.39x10 ¹	4.0	0.9985

 $\theta = \mathbf{0}$

P. Wood-Adams, PhD Thesis, McGill University, 1999.

NON-ISOTHERMAL CONSTITUTIVE EQUATION

TIME-TEMPERATURE SHIFTING CONCEPT

$$\overline{\overline{\tau}}(t) = \frac{1}{1-\theta} \int_{-\infty}^{\xi(t)} \mathbf{M} \mathbf{H} \left[C_{t(\xi)}^{-1} \left(t'(\xi') \right) + \theta C_{t(\xi)} \left(t'(\xi') \right) \right] d\xi'$$

$$M = \left[\sum_{k} \frac{a_{k}}{\lambda_{k}} \exp(-\frac{\xi - \xi'}{\lambda_{k}})\right], \quad H = \left[\frac{\alpha}{(\alpha - 3) + \beta I_{C^{-1}} + (1 - \beta) I_{C}}\right]$$

where:

 $\lambda_{k} = relaxation time$ $a_{k} = relaxation modulus$ $\alpha, \beta, \theta = material constants$ **Note:** $\frac{N_{2}}{N_{1}} = \frac{\theta}{1-\theta}$ $I_{C^{-1}}, I_{C} = first invariants$ $\overline{C}_{t} = Cauchy - Green tensor$ $\overline{C}_{t}^{-1} = Finger strain tensor$

Non-Isothermal Analysis

Peclet Number:

$$Pe = \frac{\rho C_p \,\overline{V}R}{k}$$
$$Na = \frac{a \,\eta_o \,\overline{V}^2}{k}$$

• Nahme Number:

$$k$$

$$a(T) = \frac{\eta}{\eta_o} = \exp\left[-\frac{E_o}{R_g}\left(\frac{1}{T} - \frac{1}{T_o}\right)\right]$$

where

or

$$a(T_o) = \frac{E_o}{R_g T_o^2}$$

Pseudo-Time Integral Method

$$d\xi = \frac{dt'}{a(T(t'))}$$

$$dt' = \frac{dl}{dV}$$

$$a(T) = \frac{\eta}{\eta_0} = \exp\left[-\frac{E_0}{R_0}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

- t': observer's time
- ξ: particle's time

'UPWIND' FEM

Extrudate Swell and Bending Phenomenon

Polymer Processes

Polymer processes where the K-BKZ model has been used:

- Coextrusion
 Fiber Spinning
 Film Blowing
 Film Casting
- Blow Molding

New Developments 3-D Simulations

Pom-Pom vs K-BKZ

From Sirakov (2006)

CONCLUSIONS

- Computational rheology has made good progress in the last 15 years due to rapid growth in computing power.
- From the modelling point of view, progress has been achieved mainly by using integral constitutive equations of the K-BKZ type, which are quite capable of fitting rheological data for polymer solutions and melts in simple flows.
- In the processing of non-Newtonian, complex materials, many unsolved problems still remain; however there are now available appropriate means of tackling them, so that the analysis and design of several processes becomes feasible.

FURTHER WORK

- The subject of viscoelasticity requires further study for more appropriate damping functions for fast deformations and better (faster) computational methods.
- Time-dependent flows
- Multiple-layer flows
- Three-Dimensional flows

