

Biology as an information science

High throughput methodologies

Interdisciplinary approaches

Model organisms

The Ultimate Goal

From one gene to one molecular phenotype

In search of emergent properties

The New Approach

Systems Biology

N. Wiener 1946 Cybernetics – Control and Communication in the Animal and the Machine.

...explicitly considered technical as well as biological systems as objects for the same scientific approach

Identity Crisis

WHAT MATTERS MOST IS HOW YOU SEE YOURSELF.

Systems Biology

... is all about cycles of modelingverifications and final simulations ... is all about engineering ... is all about -omics ... is a paradigm shift ... is a multidisciplinary integrated approach

ment

ADAPTATIC

(C)2001 Ph. Wautelet www.fractalzone.be

Integrative Biology

Mol

hals human

Traditional Top Models in Biological research

The ultimate model organism

Complete Published Genome Projects: 961 Archaeal:56 Bacterial:801 Eukaryal:104

Ongoing Genome Projects: 3,541 Archaeal:100 Bacterial:2422 Eukaryal: 1029

From genomes to organisms Metagenomics

Sargasso sea Antarctic Human gut Microbes:human 10:1 Exploring the bacterial fauna Less than 1% of the species are known 152 metagenomes completed

-omics or more comics?

Transform information to knowledge

Systems Biology Defining the components

Systems Biology Defining the components

Systems Biology Defining how the components are related

Systems Biology

Integrated representations or perhaps the ultimate reduction?

Can we go to phenotypes?

Emergence and Robustness

AANAT (28)

YOCHS (99) PCAP (493)

- (1)

AARAT (112) HRP----ROR Hat1 (196) -YN----HYL

LOCHS (115) -YK----POP

YOCH5 (166) -FD----KR

PCAP (563) -7P----800

AAC-3 (96) -LPKPEOPRE

AAC-5' (65) -0Y----GI

AANAT (153) VERA

AAC-3 (139) AYVI

AAC-6' (104) GITI

Bat1 (250) TEITVEDP--tOCN5 (154) IEVLLYADW

YOCHS (206) INYPLYNDS

PCAF (602) ILMPLTYADE

Ret1 (107)

LOCHS (47)

AAC-3

t OCH5

YOCH5

AAC-3

AAC-6 (1)

Green Biotechnology

Food

Energy

Environment

The problem with Green Biotechnology

The future of green biotechnology Safety through 1.Genomics/metagenomics 2.Systems biology 3.Synthetic life

One example (towards safe food and sound environment)

Delayed leaf senescence and drought resistance

Aldehyde dehydrogenase

Cytokinin

Genomics and Post-genomics

TRENDS in Biotechnology

Systems Biology of leaf senescence

Fig 3. Network model derived from developmental time series microarray data for selected senescenceenhanced genes. Solid lines indicate positive and dotted lines indicate negative influences.

Metabolomics and transcriptomics of leaf senescence

From systems analysis to systems engineering

Synthetic Life Recombinant DNA

Synthetic Life New species

Synthetic Life Synthetic chromosomes

B1-12

B13-24

B25-36

1 11

B37-49

L III

B50-61

11

B78-89

B90-101

111

B62-77

Cassettes

Coding

Genes

RNAs

Synthetic life Synthetic cell

Synthetic stochastic binary cell fates

From systems analysis to engineering to systems analysis

A second example (towards Safe Energy)

Fuel from microalgae

Sun+CO2+H2O=product+O2

Transforn the Sunlight to: Biomass Biodiesel Bioethanol H₂ Zero CO₂ balance

The process

Introducing chemotrophy to phototrophy

Introducing a dark phase

Renewable Oil Production Process up to 95% reduction in CO2 versus fossil fuels advanced biofuels green chemicals bio diesel, diesel, jet, surfactants, lubricants, polymers bio crude sunlight + CO_2 algal fermentation REVILLE Agriculture and Industrial biomass algae converts agriculture glycerol, starches, algal oil and industrial biomass sugars (cane + beets) ≁ into renewable oils Cellulosics switch grasses, wood waste fermentation vessel INPUT TRANSFORMATION OUTPUT health sciences human + animal skin care, nutritional nutrition edible oils, food supplements ingredients, animal feed

Before taking the next step

It only matters on how we look at ourselves

