

Eutrophication in lakes caused by massive use of fertilizers is characterized by an abundant growth of algae, the decay of which depletes the waters of oxygen. (T.D Brock).

Algae biomass production

Many microalgae cannot be maintained long enough in outdoor open systems because of contamination by fungi, bacteria and protozoa, and competition by other microalgae that tend to dominate regardless of the original species used as inoculum (Richmond, 1999).

PBR offer a closed culture environment, which is protected from direct fall-out, relatively safe from invasion by competing microorganisms, and where conditions are better controlled ensuring dominance of the desired species (Tredici, 2003).

Photo Bioreactors Ltd, set up in southern Spain in the late 1980s, is one of the bigges disasters in the field of microalgal biotechnology. The quality of the basic work done a Queen Elizabeth College by John Pirt and the high projected productivities (more than 200 ton ha-1 year-1) attracted investments and led to the creation of Photo Bioreactors Ltd (PBI UK) in 1986. Three years later, in 1989, PBL Spain (PBL SA) was founded with investments from private industries and public Spanish sources and a commercial plant for the production of *Dunaliella* was established in Santa Ana near Cartagena (Murcia, Spain).

Microalgae biomass producti	<mark>on (2006)</mark> (from J Benema	nn and others, modified)
Product	Species	Status
Health food and feed supplements	Arthrospira (3000 t) Chlorella (2000 t) Dunaliella (1200 t) Aphanizomenon (500 t) Haematococcus (300 t)	Commercial (Raceway ponds, circular ponds, lagoons, PBR)
Pigments (carotenoids, phycobiliproteins)	Dunaliella Arthrospira Haematococcus	Commercial (as above)
ω 3 PUFA (DHA)	Schyzochitrium (10 t oil) Crypthecodiniun (240 t oil)	Commercial (10-100 m ³ fermenters)
Fluorescent diagnostics Labeled compounds (stable isotopes) Restriction enzymes	Arthrospira Anabaena Anacystis	Commercial (small PBR)
Aquaculture feeds	Various spp. (1000 t)	Commercial (cylinders, bags, tanks)
Polysaccharides		Research
Biofertilizers	Algae commercial	Research
Bioactive molecules (biopesticides, probiotics, pharmaceuticals, biosensors,cosmetics)	applications (2006)	Research
Bioremediation (xenobiotics, heavy metals)	< 10,000 tons	A niche
CO ₂ biofixation		tachnology
Energy (biodiesel, H ₂)		technology

Minimum energy losses	Maximum energy remaining				
	C3 plants	C4 plants	Microalgae		
Total incident solar radiation	100%	100%	100%		
Radiation outside PAR (55%)	45%	45%	45%		
Degradation of absorbed PAR photons to excitation energy at 700 nm (21 %)	35.6%	35.6%	35.6%		
Conversion of excitation energy at 700 nm to the chemical energy of glucose (65%)	12.4% (MPE)	8.2% (MPE)	12.4% (MPE)		
Reflection (10%)	11.2%	7.4%	11.2%		
Photorespiration (40 % in C3 plants, none in C4 plants and microalgae)	6.7%	7.4%	11.2%		
Respiration (20%)	5.4%	5.9%	9.0%		
Photosaturation & photoinhibition (20% in C3 plants; 10% in C4 plants ; 40 % in microalgae)	4.3 %	5.3%	5.4%		

Example (Slesser & Lewis, 1979; Leig	es of High Bio ht el al. 1987; Klass, 2	2004) (Higher heating value	/ity e: 15.6-20.0 Mj kg ⁻¹)		
Biomass community	Location	Yield (t dry w. ha ⁻¹ year ⁻¹)	Photosynthetic efficiency (%)		
Hybrid poplar (Populus spp.) (C3)	Minnesota	8 -11	0.3- 0.4		
Water hyacinth (Eichornia crassipes)	Missisipi	11 – 33 (>150)	0.3- 0.9		
Switchgrass (Panicum virgatum) (C4)	Texas	8-20	0.2- 0.6		
Sweet sorghum (Sorghum bicolor) (C4)	Texas-California	22 - 47	0.6-1.0		
Coniferous forest	England	34	1.8		
Maize (Zea mays) (C4)	Israel	34	0.8		
Tree plantation	Congo	36	1.0		
Tropical forest	West Indies	60	1.6		
Algae	Different location	ns 70-80	2-2.5		
Sugar cane (Saccharum officinarum)	Hawaii-Java	64-87	1.8-2.6		
Napier grass (Pennisetum purpureum)	Hawaii, Puerto Rico	85-106	2.2-2.8		

(with the	e marine microal <u>c</u>	ga <i>Tetraselmis</i> 1)			
	Pond (Calabria, Italy, 1983)	Tubular reactors (Tuscany and Lazio, Italy, 1998-2005)	GW reactor (Tuscany, Italy, 2006)		
Productivity (ton ha ⁻¹ y ⁻¹)	~50	57- 60	~ 70		
Energy output (GJ ha ⁻¹ y ⁻¹)	1150	1350	1600 		

Energy cost for harvesting and biomass concentration

Even with efficient systems, 10% of the energy content of the biomass is required to concentrate it

Main limitations and barriers to large-scale algae farming Low actual PE (photosynthetic efficiency) and productivities A negative Net Energy Ratio (due to high energy consumption for water pumping, CO₂ distribution, mixing and harvesting, etc.) Instability of the culture (difficulty in maintaining the selected species) (and we do need selected species) No experience on large scale (thousands of hectares) cultures Large variability in perfomances among culture systems and difficulty to standardize techniques Limited data on large scale algae biomass processing (e.g. extraction)

Iniziative commen	<mark>ciali su biodiese</mark>	l da microalghe (2006-2007)	
Company	Location	Web	Links
Algatech	Israel		
Algoil	Bamgalore, India		
AlgaeFuels (Owned by Bioking)	Netherlands	www.algaefuels.org	
Aquaflow Bionomic Corporation	New Zealand	www.bio-diesel.co.nz	
Biofuel Systems (BSF)	Spain.		
De Beer's Fuels BPK	South Africa		GFT Technology
Ecogenics Research Center	Tennessee, USA	www.ecogenicsresearchcenter.org	
Energetix (Victor Morgan Group)	Victoria, Australia		GFT technology.
Enhanced Biofuels & Technologies			Ponds and PBR through GreenFuel
Energy Farms	Texas, USA	www.nanoforcetechnologies.com	owned by Nanoforce Inc.
GreenFuel Technologies Corp.	Massachusetts, USA	www.greenfuelonline.com	MIT
GreenShift Industrial Design Corporation	New York, USA	www.greenshift.com	through Veridiun and Ohio University
Green Star Products and De Beers Fuel Limited	South Africa		GFT Technology
GS Clean Tech	New York, USA	www.gs-cleantech.com	GreenShift Corp. & Veridium Corp. &Ohio State University
Kwikpower Int. Advanced Biofuels Technologies	Gibraltar, UK	www.kwikpower.com	
Infinifuel Corporation	Nevada, USA	www.infinifuel.com	
Needful Provision, Inc	Oklaoma USA	www.needfulprovision.com	
PetroAlgae. LLC (XL Tech Group, Inc.)	Florida, USA	www.xltg.com/html/activity/PetroAlgae.asp	Arizona State University
PetroSun Drilling Inc. (with Algae Biofuels)	Arizona, USA	www.petrosun.us www.petrosuninc.com	
Solazyme, Inc.	California, USA	www.solazyme.com	
Solix Biofuels, Inc. (Sun Source Industries)	Colorado, USA	www.solixbiofuels.com	Colorado State University
Sun Source Industries	Colorado, USA	www.cobioscience.com	Solix Biofuels, Inc.
Valcent Products, Inc	Vancouver, Canada	www.valcent.net	
Veridium Corp.	New York, USA	www.veridium.com	
XL Tech Group Inc.	Florida, USA	www.xltechgroup.com	www.xltechgroup.com

days	1	2	3	4	5	6	7	8	9	10	
Biom (g)	2	4	8	16	32	64	128	256	512	1024	1 kg
days	11	12	13	14	15	16	17	18	19	20	
Biom (Kg)	2	4	8	16	32	64	128	256	512	1024	1 t
,											
days	21	22	23	24	25	26	27	28	29	30	
Biom (tons)	2	4	8	16	32	64	128	256	512	1024	1000t
) F	rom 1	g to 1	000 t in	30 day	ys!!!				

days	1	2	3	4	5	6	7	8	9	10	
Biom. (g)	2	4	8	16	32	64	128	256	512	1024	1 kg
Surf. (m2)	0.04	0.08	0.16	0.32	0.64	1.28	2.56	5.12	10.24	20.5	
days	11	12		14	15	16	17	18	19	20	
Biom (kg)	2	4	8	16	32	64	128	256	512	1024	1 t
Surf. (m2)	41	82	164	328	650	1312	2624	5248	10496	21.000 ►	
days	21	22	23	24	25	26	27	28	29	30	
Biom (t)	2	4	8	16	32	64	128	256	512	1024	1000
S (ha)	4.2	8.4	16.8	33.6	67.2	134.4	268.8	537.6	1.075	2.150 ha	

Biofuels from microalgae: the weak points

- 1. Low productivity
- 2. High cost of the photobioreactor/pond
- **3.** High cost for mixing
- 4. High cost of harvesting/dewatering the biomass
- 5. Cost for water pumping, etc.

High cost of biomass production

How close the gap between

- → present cost of algal biomass production : 3 30 $\,$ € Kg⁻¹
- \rightarrow the cost for biofuel production < 0.3 \in Kg⁻¹

Microalage	Biomass productivity	Lipid content	Lipid productivity
	(mg L ⁻¹ day ⁻¹)	(% biomass)	(mg L ⁻¹ day ⁻¹)
Porphyridium cruentum	613.3 ± //.8	9.4 ± 0.2	57.5±7.3
Tetraselmis suecica OR	448.0 ± 0.0	8.4 ± 0.3	37.5±0.0
letraselmis sp. LW	414.0 ± 11.3	14.9 ± 0.1	61.8 ± 1.7
l'etraselmis suecica CV	383.6 ± 1.3	14.9 ± 0.1	57.3 ± 0.2
Chlorococcum sp. UMACC 112	380.0 ± 2.6	19.5 ± 0.7	74.2 ± 0.5
Scenedesmus sp. DM	348.2 ± 2.6	21.8 ± 0.6	75.8 ± 0.6
Phaeodactylum tricornutum	335.0 ± 31.1	19.2 ± 0.4	64.3 ± 6.0
Chlorella sorokiniana	315.5 ± 10.3	19.8 ± 0.7	62.3 ± 2.0
Chlorella sp. AMI2	307.3 ± 7.7	19.2 ± 0.4	59.0 ± 1.5
Scenedesmus sp. cvc3	283.6 ± 5.1	$\textbf{20.6} \pm \textbf{0.8}$	58.4 ± 1.1
Nannochloropsis sp. RM	278.2 ± 0.0	31.0 ± 0.5	86.3 ± 0.0
Ellipsoidium sp. LW 277/01	275.5 ± 21.9	$\textbf{22.5} \pm \textbf{0.8}$	62.1 ± 4.9
Chlorella vulgaris UTEX 1200	274.5 ± 21.9	19.4 ± 0.9	53.2 ± 4.2
Nannochloropsis sp. MRS	270.0 ± 2.6	24.9 ± 0.7	67.2 ± 0.6
Scenedesmus quadricauda	260.0 ± 1.3	19.0 ± 0.5	49.3 ± 0.2
Monodus subterraneus UTEX 151	257.3 ± 20.6	15.5 ± 0.5	39.9 ± 3.2
Isochrysis (T-ISO) CS 177	252.5 ± 1.8	22.0 ± 1,6	55.4 ± 0.4
Nannochloropsis sp. ZM	241.8 ± 7.7	33,1 ± 1,7	79.9 ± 2.6
Pavlova salina	240.0 ± 7.1	31.1 ± 1.4	74.6 ± 2.2
Nannochloropsis sp. MI	237.3 ± 1.3	$\textbf{22.3} \pm \textbf{0.5}$	52.8 ± 0.3
Ellipsoidium sp. LW 70/01	235.5 ± 1.3	$\textbf{28.4} \pm \textbf{0.4}$	67.0 ± 0.4
Nannochloropsis sp. RP	232.7 ± 25.7	37.0 ± 0.5	86.1 ± 9.5
Nannochloropsis sp. CS 246	231.8 ± 1.3	30.4 ± 0.3	70.4 ± 0.4
Chlorella vulgaris CCAP 211/11b	231.8 ± 1.3	19.7 ± 0.3	45.7 ± 0.3
Pavlova lutheri	212.5 ± 10.6	37.1 ± 0.5	78.9 ± 3.9
Isochrysis sp. MRS	194.0 ± 5.7	$\textbf{28.7} \pm \textbf{0.5}$	55.6 ± 1.6
Thalassiosira pseudonana	135.0 ± 5.3	22.0 ± 1.7	29.7 ± 1.2
Skeletonema sp. CS 252	128.8 ± 5,0	$\textbf{32.9} \pm \textbf{0.2}$	42.4 ± 1.6
Skeletonema sp. CS 181	123.8 ± 3.5	$\textbf{21.1}\pm\textbf{0.9}$	26.1 ± 0.8
Chaetoceros muelleri	92.0 ± 4.2	34,7 ± 0,2	32.0 ± 1.5
Chaetoceros calcitrans	62.0 ± 1.4	409+01	253+06

The experiments showed that *Nannochloropsis* has a potential for producing more than **20 tons of lipid per ha per year** in the Mediterranean basin and more than **30 tons of lipid per ha per year** in sunny tropical areas (20 MJ m⁻² d⁻¹)

