PHYTOREMEDIATION – A Novel Technology to Decontaminate Polluted Sites

Nicolas Kalogerakis
Department of Environmental Engineering
Technical University of Crete

Coworkers:
J. Kadukova, E Manousaki, M. Kokkali,
M. Nikolopoulou

Phytoremediation

Phytoremediation is defined as the use of green plants and their associated microorganisms, soil amendments, and agronomic techniques to remove, degrade or detoxify harmful environmental pollutants.

Phytoremediation technologies:

I. Rhizosphere Enhanced Bioremediation (or Phytostimulation)
II. Phytodegradation (or Phytotransformation)
III. Phytostabilization
IV. Phytoextraction (or Phytoaccumulation)
V. Rhizofiltration
VI. Phytovolatilization
VII. Phytoexcretion (?)
Phytoremediation processes

Phytovolatilization: transfer of pollutants from the soil to the atmosphere.

Phytoextraction: transfer of pollutants from the soil and accumulation in the above ground parts of the plant.

Phytodegradation: enzymatic degradation of the pollutants in the plant tissue.

Rhizofiltration: transfer of pollutants from the soil and accumulation in the roots of the plant.

Phytostabilization: Stabilization of heavy metals in the soil/root surface and reduction of heavy metal mobility.

Enhanced Bioremediation (or Phytostimulation): Enhancement of the microbial community and increase of biodegradation in the rhizosphere.

Phytoremediation Research at TU-Crete

General Project: Phytoremediation of contaminated sites with heavy metals using Mediterranean plants.

Specific aims:
- Heavy metals: Lead (Pb), Cadmium (Cd) and their mixtures.
- Identification of Pb and Cd hyperaccumulators among Mediterranean plants.
- Focusing on salt-tolerant plants.
Why halophytes??

- Halophytes can be cultivated with saline irrigation water which is a desirable feature since often high-quality irrigation water is not available even for application to crops in arid and semi-arid regions.
- Salt-water irrigation is becoming an increasingly important practice because the quality of irrigation waters is decreasing as water supplies for agriculture become restricted due to urban needs and climate change.
- Salinity has been shown to be a key factor for
 - the increased bioavailability of metals in the soils due to reduced soil metal sorption
 - the translocation of metals from roots to the aerial parts of the plant - an important feature for phytoextraction applications

Salt-tolerant plants examined:

Plant #1: *Tamarix smyrnensis*

Plant #2: *Nerium oleander*

Plant #3: *Atriplex halimus*
Tamarix – Experiments

Pot experiments with plants grown in metal polluted soils in order to evaluate the effect of metals and soil salinity on the growth of plant

Measurements:

<table>
<thead>
<tr>
<th>Plant</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>Total metals</td>
</tr>
<tr>
<td>Height</td>
<td>Plant available metals</td>
</tr>
<tr>
<td>Water content</td>
<td>pH</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>EC</td>
</tr>
<tr>
<td>Proteins</td>
<td>Organic matter</td>
</tr>
<tr>
<td>Peroxidase activity</td>
<td>Total CaCO₃</td>
</tr>
<tr>
<td>Metal content (in roots and shoots)</td>
<td></td>
</tr>
</tbody>
</table>

Pot Experiments

T. smyrnensis growing in contaminated soil with 800 ppm Pb and 16 ppm Cd

10 -15 cm cuttings of *T. smyrnensis*

Propagation period : 21 days

Adaptation period : 8 months

Experimental period : 10 weeks

Experimental Conditions

- **Temperature** : 19 – 47°C
- **Humidity** : 18 – 70%
- **Photoperiod** : 14 -15 h
Tamarix smyrnensis

Pb accumulation in the plant

![Graph showing Pb concentration in plant tissue](graph.png)

Cd Accumulation

Cd concentration in individual parts of *T. smyrnensis* at different soil salinities

<table>
<thead>
<tr>
<th>Salinity [%]</th>
<th>L/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>0.5</td>
<td>0.82</td>
</tr>
<tr>
<td>3</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Tamarix smyrnensis

Biomass (dry weight) Treatment with mixture of Pb & Cd at different salinities

Chlorophyll in the leaves Treatment with Cd at different salinities

Tamarix: Salt crystals on leaves

Droplets secreted by salt glands were crystallized on the leaves due to high Temperatures.
Cadmium excretion from leaf tissue of *T. smyrnensis* (pot experiment). Comparison of control plants and plant treated with 16 ppm Cd of dry weight of soil at two soil salinities (0% and 0.5%)

Metals excreted on the leaf surface of *T. smyrnensis* (pot experiment). Comparison of control plants and plant treated with 800 ppm Pb and 16 ppm Cd of dry weight of soil at two soil salinities (0% and 0.5%)
Heavy Metal Tolerance

Plant mechanisms of heavy metal tolerance:
 i. Avoidance
 ii. Exclusion
 iii. Immobilization
 iv. Excretion
 v. Mechanisms involving enzymatic changes

❖ The resistance of halophytes to salt stress is usually correlated with a more efficient antioxidant system (Zhu et al., 2004).
❖ Thus, halophytes may be more capable to cope with heavy metals stress than common plants since heavy metal stress induces oxidative stress to cellular structures.

Excretion mechanism

❖ Salt secretion through salt glands is considered as an adaptive strategy to regulate plant tissue ion concentration
❖ An important mechanism which contributes to the resistance of all plants to increased salinity levels.
❖ Halophytes are adapted to saline environments:
 ➔ salt avoidance
 ➔ salt tolerance
 ➔ salt evasion
❖ The main function of salt glands is the secretion of excess stress-inducing ions that invade the plant
Species of the genus *Tamarix* are well known as salt-tolerant plants with the ability to excrete excess salt as salt droplets through salt glands on their leaf surface.

There is evidence that the salt glands of *Tamarix sp.* secrete with minimal selectivity a variety of different ions and that the composition of the secreted salts is related to the composition in the rhizosphere.
Salt crystals on leaf tissue of *T. smyrnensis* at different soil salinities

0% salinity 0.5% salinity

Hydroponic experiment

Hydroponic growth with exposure to 100 ppm Pb and 5 ppm Cd

- **Age of plants:** 10 months
- **Experimental period:** 2 weeks
- **Temperature:** 19 – 24°C
- **Humidity:** 57 – 66%
- **Photoperiod:** 12 h

Experimental Conditions

Nutrient solution (mg/l):

- $143.0\ \text{Ca(NO}_3\text{)}_2$
- $2.86\ \text{H}_3\text{BO}_3$
- $35.75\ \text{KNO}_3$
- $1.86\ \text{MnCl}_2\cdot4\text{H}_2\text{O}$
- $17.75\ \text{KCl}$
- $0.22\ \text{ZnSO}_4\cdot7\text{H}_2\text{O}$
- $35.75\ \text{KH}_2\text{PO}_4$
- $0.079\ \text{CuSO}_4\cdot5\text{H}_2\text{O}$
- $35.75\ \text{MgSO}_4$
- $0.6\ \text{FeSO}_4\cdot7\text{H}_2\text{O}$
Excretion rates of the metals were measured by cleaning residues off leaf surfaces:
The area below the plant was covered by weighted tissue paper. In the 3rd, 6th, 9th, 12th and 14th day the leaves were washed with 0.1% v/v HNO\textsubscript{3} and the resulting solution was absorbed by the paper.

Metal content analysis in the paper wipes was performed by ICP according to modified method of Soon

Metal content analysis in the plant tissue was performed by ICP spectroscopy according to modified method of Soon

Determination of Pb and Cd content in the nutrient medium was performed by ICP spectroscopy

Pb Excretion Rates

![Graph showing Pb excretion rates from leaf tissue of *T. smyrnensis* exposed to 100 ppm Pb and 5 ppm Cd (hydroponic experiment)]
Phytoextraction of contaminated soils with heavy metals

- Problems of Phytoextraction
 - Contaminated crop disposal
 - Remediation time required

- Phytoexcretion process should be kept in mind
 - If not properly addressed, it reduces the effectiveness of other phytoremediation processes

Phytoextraction + Phytoexcretion

Opportunity to intervene (?)

Surface accumulation

Capture and remove on appropriate media
Phytoremediation processes:

Phytoexcretion:
Excretion of heavy metals from the leaves

Phytoextraction

Phytodegradation

Phytostabilization

Enhanced Bioremediation (or Phytostimulation)

Phytoexcretion:

A Novel Approach of Phytoremediation (?)

- **“Phyto-Excretion”:**
 - The plant can be viewed as a “biological pump” for heavy metals
 - Intervening and capturing the droplets on suitable media before they are recycled onto the top soil

- **Advantages:**
 - The frequency of tree pruning and uprooting is lowered
 - lower costs
 - faster remediation times
 - possibility of recovery of metals
 - Coupled to phytoextraction
Planning of Experimental part

Plant: *Nerium oleander*

- Pot experiments (10 weeks)
 - Cd (0, 0.5, 3% NaCl)
 - Pb (0, 0.5, 3% NaCl)
 - Pb & Cd (0, 0.5, 3% NaCl)
 - Pb increasing concentrations (0, 0.5, 3% NaCl)

- Hydroponic experiments (2-4 weeks)
 - Pb increasing concentrations
 - Cd increasing concentrations

Nerium oleander

Pb concentration (mg kg$^{-1}$ dry weight) in individual plants parts

![Graph showing Pb concentration added in soil (ppm) vs. Pb concentration in plant tissue (ppm) for Shoots and Roots.](image)
Nerium oleander

Biomass (dry weight) of Nerium oleander

![Biomass graph](image)

Chlorophyll contents of Nerium oleander

![Chlorophyll graph](image)

Is the plant under stress??

Effect of Pb on peroxidase activity of Nerium oleander

![Peroxidase activity graph](image)
Interactions between Aphids (*Aphis nerii*) and Oleander Growing on Pb and Cd Contaminated Soil

Portion of plants *N. oleander* infested by aphids during weeks 5 to 7 and 8 to 10 are almost identical for all treatments.

(Plants infestation recording: no presence of aphids, plant infested by number of aphids from 1 – 10 and plant infested by >10 aphids)

Weeks 5 to 7

Weeks 8 to 10
Portion of plants *N. oleander* not infested by aphids \((P(X=0))\) for various treatments with lead and cadmium as a function of salinity. Portions marked with the same letter are significantly different with each other (corresponding to different saline concentrations) at least at 5% level of significance.

Overview of experimental results

Tamarix smyrnensis:

Suitable for phytoextraction in environments with increased salinity.

Nerium oleander:

A very good choice for phytostabilization.

Atriplex halimus:

A new Pb-hyperaccumulator (?)

Phytoremediation of organics (OMW)

TOP VIEW

VERTICAL VIEW

water

Perforated pipe

gravel

OMW

Subsurface disposal area of OMW
Protecting the river (riparian zone)

- Aim: To stop the pollutant plume and degrade contaminants that have been extracted by the plants
- Monitoring through multilevel wells

APPLICATION: Poplars to control the flow of nitrates from the agricultural land next to Evrotas river.
Remediation of saline soils

• *Salinization* is one of the most serious problems confronting sustainable agriculture in irrigated production lands in semi-arid and arid regions. UN-EP estimates that ~20% of agricultural land and 50% of cropland in the world is salt stressed (Ravindran et al., 2007)

• Soils need proper amendments as a source of calcium (Ca\(^{2+}\)) to replace sodium (Na\(^{+}\)) from the cation exchange sites. The displaced Na\(^{+}\) is leached from the root zone through excess irrigation (Qadir et al., 2003). [Chemical remediation – Potential aquifer problems?]

• Can phytoremediation help?

Phytoremediation of saline soils by halophytes

• Phytoremediation desalination approach #1
 – Cultivation of certain salt tolerant plant species with the ability to increase the dissolution of soil calcite (CaCO\(_3\)) in the rhizosphere to provide Ca\(^{2+}\) that can be exchanged with Na\(^{+}\) at cation exchange sites. Displaced Na\(^{+}\) can be leached out of the soil with irrigation water. (Qadir and Oster, 2002; Qadir et al., 2003; Qadir et al., 2004; Gerhardt et al., 2006) [Aquifer problems?]

• Phytoremediation desalination approach #2
 – Halophytes could be grown on salt-affected soils to remove significant amounts of salt and Na\(^{+}\) through their aerial parts. Salt is removed from the soil to the extent that soil can be returned to agricultural productivity (Chaudhri et al., 1964; Gritsenko and Gritsenko, 1999; Owens, 2003; Keiffer and Ungar, 2002; Gerhardt et al., 2006; Ravindran et al., 2007).
CONCLUDING REMARKS

There is a group of plants (halophytes) that have the capability to excrete heavy metals from their leaves as a detoxification mechanism.

In this case, the plant becomes a “biological pump” for heavy metals. “Phyto-excretion” is an alternative phytoremediation process that should be further explored.

The use of halophytes for phytoremediation applications should be further explored:

- Rhizodegradation of organic contaminants [they can deal better with stress]
- Rhizosphere enhanced bioremediation of mixed pollutants (metals + organics) [by removing the metals the microbes work better]
- Soil desalination [a low cost long term remediation approach]

The project was co-funded by
1) The European Social Fund & National Resources (EPEAEK II - IRAKLITOS)
2) Marie Curie Development Host Fellowship programme